HODGE THEORY AND COMPLEX
ALGEBRAIC GEOMETRY |

CLAIRE VOISIN
CNRS, Institut de Ma#imatiques de Jussieu

Translated by Leila Schneps

@%@ CAMBRIDGE
;2; UNIVERSITY PRESS



PUBLISHED BY THE PRESS SYNDICATE OF THE UNIVERSITY OF CAMBRIDGE
The Pitt Building, Trumpington Street, Cambridge, United Kingdom

CAMBRIDGE UNIVERSITY PRESS
The Edinburgh Building, Cambridge CB2 2RU, UK
40 West 20th Street, New York, NY 10011-4211, USA
477 Williamstown Road, Port Melbourne, VIC 3207, Australia
Ruiz de Alaron 13, 28014 Madrid, Spain
Dock House, The Waterfront, Cape Town 8001, South Africa

http://lwww.cambridge.org
© Cambridge University Press 2002

This book is in copyright. Subject to statutory exception
and to the provisions of relevant collective licensing agreements,
no reproduction of any part may take place without
the written permission of Cambridge University Press.

First published 2002
Printed in the United Kingdom at the University Press, Cambridge
Typefacelimes 10/13 pt ~ SystemATpX2¢  [TB]
A catalogue record for this book is available from the British Library

Library of Congress Cataloguing in Publication data

Voisin, Claire.
Hodge theory and complex algebraic geometry / Claire Voisin.
p. cm. — (Cambridge studies in advanced mathematics)
Includes bibliographical references and index.

ISBN 0 521 80260 1
1. Hodge theory. 2. Geometry, Algebraic. |. Title. Il. Series.

QA564 .V65 2002

516.35—-dc21 2002017389

ISBN 0521 80260 1 hardback



Contents

0 Introduction
| Preliminaries
1 Holomorphic Functions of Many Variables

1.1

1.2

13

Holomorphic functions of one variable
1.1.1 Definition and basic properties
1.1.2 Background on Stokes’ formula
1.1.3 Cauchy’s formula

Holomorphic functions of several variables
1.2.1 Cauchy’s formula and analyticity
1.2.2 Applications of Cauchy’s formula
The equatio? = f

Exercises
2 Complex Manifolds

21

2.2

2.3

Manifolds and vector bundles

2.1.1 Definitions

2.1.2 The tangent bundle

2.1.3 Complex manifolds

Integrability of almost complex structures
2.2.1 Tangent bundle of a complex manifold
2.2.2 The Frobenius theorem

2.2.3 The Newlander—Nirenberg theorem
The operator8 andd

2.3.1 Definition

2.3.2 Local exactness

2.3.3 Dolbeault complex of a holomorphic bundle

2.4 Examples of complex manifolds
Exercises

pagel
19
21
22
22
24
27
28
28
30
35
37
38
39
39
41
43
44
44
46
50
53
53
55
57
59
61



Vi Contents

3 Kahler Metrics
3.1 Definition and basic properties
3.1.1 Hermitian geometry
3.1.2 Hermitian and Khler metrics
3.1.3 Basic properties
3.2 Characterisations ofdfiler metrics
3.2.1 Background on connections
3.2.2 Kahler metrics and connections
3.3 Examples of ldhler manifolds
3.3.1 Chern form of line bundles
3.3.2 Fubini-Study metric
3.3.3 Blowups
Exercises
4 Sheaves and Cohomology
4.1 Sheaves
4.1.1 Definitions, examples
4.1.2 Stalks, kernels, images
4.1.3 Resolutions
4.2 Functors and derived functors
4.2.1 Abelian categories
4.2.2 Injective resolutions
4.2.3 Derived functors
4.3 Sheaf cohomology
4.3.1 Acyclic resolutions
4.3.2 The de Rham theorems
4.3.3 Interpretations of the grousp’
Exercises
Il The Hodge Decomposition
5 Harmonic Forms and Cohomology
5.1 Laplacians
5.1.1 ThelL? metric
5.1.2 Formal adjoint operators
5.1.3 Adjoints of the operatois
5.1.4 Laplacians
5.2 Elliptic differential operators
5.2.1 Symbols of differential operators
5.2.2 Symbol of the Laplacian
5.2.3 The fundamental theorem
5.3 Applications
5.3.1 Cohomology and harmonic forms

63
64
64
66
67
69
69
71
75
75
76
78
82
83
85
85
89
91
95
95
96
99
102
103
108
110
113
115
117
119
119
121
121
124
125
125
126
128
129
129



Contents

5.3.2 Duality theorems

Exercises
The Case of ihler Manifolds

6.1

6.2

6.3

The Hodge decomposition

6.1.1 Kahler identities

6.1.2 Comparison of the Laplacians
6.1.3 Other applications

Lefschetz decomposition

6.2.1 Commutators

6.2.2 Lefschetz decomposition on forms
6.2.3 Lefschetz decomposition on the cohomology
The Hodge index theorem

6.3.1 Other Hermitian identities

6.3.2 The Hodge index theorem

Exercises
Hodge Structures and Polarisations

7.1

7.2

7.3

Definitions, basic properties
7.1.1 Hodge structure
7.1.2 Polarisation

7.1.3 Polarised varieties
Examples

7.2.1 Projective space

7.2.2 Hodge structures of weight 1 and abelian varieties

7.2.3 Hodge structures of weight 2
Functoriality

7.3.1 Morphisms of Hodge structures

7.3.2 The pullback and the Gysin morphism
7.3.3 Hodge structure of a blowup

Exercises

Holomorphic de Rham Complexes and Spectral Sequences

8.1

8.2

8.3

Hypercohomology

8.1.1 Resolutions of complexes

8.1.2 Derived functors

8.1.3 Composed functors

Holomorphic de Rham complexes

8.2.1 Holomorphic de Rham resolutions
8.2.2 The logarithmic case

8.2.3 Cohomology of the logarithmic complex
Filtrations and spectral sequences

8.3.1 Filtered complexes

Vii
130
136
137
139
139
141
142
144
144
146
148
150
150
152
154
156
157
157
160
161
167
167
168
170
174
174
176
180
182
184
186
186
189
194
196
196
197
198
200
200



viii

8.4

Contents

8.3.2 Spectral sequences

8.3.3 The Folicher spectral sequence
Hodge theory of open manifolds

8.4.1 Filtrations on the logarithmic complex
8.4.2 First terms of the spectral sequence
8.4.3 Deligne’s theorem

Exercises
Variations of Hodge Structure
9 Families and Deformations

9.1

9.2

9.3

Families of manifolds
9.1.1 Trivialisations
9.1.2 The Kodaira—Spencer map
The Gauss—Manin connection
9.2.1 Local systems and flat connections
9.2.2 The Cartan—Lie formula
The Kahler case
9.3.1 Semicontinuity theorems
9.3.2 The Hodge numbers are constant
9.3.3 Stability of Kahler manifolds

10 \Variations of Hodge Structure

\%
11

10.1

10.2

10.3

Period domain and period map
10.1.1 Grassmannians
10.1.2 The period map

10.1.3 The period domain
Variations of Hodge structure
10.2.1 Hodge bundles

10.2.2 Transversality

10.2.3 Computation of the differential
Applications

10.3.1 Curves

10.3.2 Calabi-Yau manifolds

Exercises
Cycles and Cycle Classes

Hod
11.1

ge Classes
Cycle class
11.1.1 Analytic subsets
11.1.2 Cohomology class
11.1.3 The Khler case
11.1.4 Other approaches

201
204
207
207
208
213
214
217
219
220
220
223
228
228
231
232
232
235
236
239
240
240
243
246
249
249
250
251
254
254
258
259
261
263
264
264
269
273
275



12

Contents

11.2 Chern classes
11.2.1 Construction
11.2.2 The Kahler case
11.3 Hodge classes
11.3.1 Definitions and examples
11.3.2 The Hodge conjecture
11.3.3 Correspondences
Exercises
Deligne—Beilinson Cohomology and the Abel-Jacobi Map
12.1 The Abel-Jacobi map
12.1.1 Intermediate Jacobians
12.1.2 The Abel-Jacobi map
12.1.3 Picard and Albanese varieties
12.2 Properties
12.2.1 Correspondences
12.2.2 Some results
12.3 Deligne cohomology
12.3.1 The Deligne complex
12.3.2 Differential characters
12.3.3 Cycle class
Exercises

Bibliography
Index

276
276
279

279

279

284

285
287
290
201
201
292
296
300
300

302

304

304

306

310
313

315
319



1
Holomorphic Functions of Many Variables

In this chapter, we recall the main properties of holomorphic functions of several
complex variables. These results will be used freely in the remainder of the
text, and will enable us to introduce the notions of a complex manifold, and a
holomorphic function defined locally on a complex manifold.

TheC-valued holomorphic functions of the complex varialdes . ., z, are
those whose differential iS-linear, or equivalently, those which are annihilated
by the operator%. It follows immediately from this definition that the set of
holomorphic functions forms a ring, and that the composition of two holo-
morphic functions is holomorphic. The following theorem, however, requires
a certain amount of work.

Theorem 1.1 The holomorphic functions of the complex variables z., z,
are complex analytic, i.e. they locally admit expansions as power series in the
variables z.

This result is an easy consequence of Cauchy’s formula in several variables,
which is a generalisation of the formula
1 f(¢)

= 27 Jyal -z

de,
wheref is a holomorphic function defined in a disk of radissl, and| z| < 1.
Cauchy’s formula can also be used to prove Riemann’s theorem of analytic

continuation:

Theorem 1.2 Let f be a bounded holomorphic function on the pointed disk.
Then f extends to a holomorphic function on the whole disk.

And also Hartogs’ theorem:

21



22 1 Holomorphic Functions of Many Variables

Theorem 1.3Let f be a holomorphic function defined on the complement
of the subset F defined by the equations=zz, = 0in a ball B of C", n > 2.
Then f extends to a holomorphic function on B.

(More generally, this theorem remains trud-ifis an analytic subset of codi-
mension 2, but we only need the present version here.) Hartogs’ theorem is
used more in complex geometry than Riemann’s theorem, because it does not
impose any conditions on the functidn More generally, it enables us to show
that a holomorphic section of a complex vector bundle over a complex man-
ifold is defined everywhere if it is defined on the complement of an analytic
subset of codimension 2. This is classically used to show the invariance of the
“plurigenera” under birational transformations.

We conclude this chapter with a proof of an explicit formula for the local
solution of the equation

of
9z
whereg is a differentiable function defined on an open s&t ofhis will be used

in the following chapter, to prove the local exactness of the Dolbeault comple
A good reference for the material in this chapter mridander (1979).

’

1.1 Holomorphic functions of one variable
1.1.1 Definition and basic properties

LetU c C = R? be an open set, anfi: U — C a C! map. Letx, y be the
linear coordinates oR? such thatz = x + iy is the canonical linear complex
coordinate orC. Consider the complex-valued differential form

dz=dx+idy € Homg (Ty,C) = Qur ®C.

Clearlydz and its complex conjugatdz form a basis of2y g ® C overC at
every point ofU, since

2dx =dz+dz, 2idy=dz—dz (1.1)

The complex differential formdf € Homg (Ty, C) can thus be uniquely
written

dfy = f(u)dz+ fz(u)dz, (1.2)
where the complex-valued functions— f,(u), u — fz(u) are continuous.

of

Definition 1.4 We write § = 2' and f = L.
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By (1.1) we obviously have

of 1 /of . of of 1 /of  of
—==l—-1—), —==—+1—. (13)
0z 2\ 09X ay 0z 2\ 0X ay

We can also consider the decomposition (1.2) as the decompositibh af
Homg(C, C) into C-linear andC-antilinear parts:

i ; ; ;
Lemma 1.5 We have; (u) = 0if and only if theR-linear map
dfu:TU‘u;(C—)(C

is C-linear, i.e. is equal to multiplication by a complex number, which is then
equal to%(u).

Proof Becausezf—y = i for the natural complex structure dfy ,, the mor-
phismdf, : Ty, — Cis C-linear if and only if we have

of of
B_y(u) = '&(U),

and by (1.3), this is equivalent t%(u) = 0. Moreover, we then havef, =

" :
Z(udzie.
d of d L of
df“(a_x> = E(U), dfu(@) =1 E(U),

which proves the second assertion, since the natural isomorphjsnE C
sends to 1. 0

Definition 1.6 The function f is said to be holomorphic if it satisfies one of the
equivalent conditions of lemma 1.5 at every point of U.

Lemma 1.7 If f is holomorphic and does not vanish on U, th%)lhs holomor-
phic. Similarly, if f g are holomorphic, fg and g and go f (when g is
defined on the image of f) are all holomorphic.

Proof The mape — % is holomorphic orC*, so that the first assertion follows
from the last one. Furthermore gfand f areC! andg is defined on the image
of f,thengo f isC* and we have

d(g o f)u = dgf(u) Odfu.
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If dgf () andd f, are bothC-linear for the natural identifications & v, Tc, ()
andTc g0y With C, thend(g o f), is alsoC-linear, and the last assertion is
proved. The other properties are proved similarly. O

In particular, we will use the following corollary.

Corollary 1.8 If f is holomorphic on U, the map g defined by

(@
T z—a

9(2)

is holomorphic on U- {a}.

1.1.2 Background on Stokes’ formula

Leta be ac? differentialk-form on am-dimensional manifoltl (cf. definition
2.3andsection2.1.2inthe following chapterkif. .., x, are local coordinates
onU, we can write

(XZZO(|dX|,
|

where the indiced parametrise the totally ordered subsigts< --- < iy of

{1,...,n}, withdx, = dx, A --- A dX,. We can then define the continuous
(k + 1)-form
da—zaﬂdximx- (1.4)
a L 9% ; '

we check that it is independent of the choice of coordinates. This follows from
the more general fact that¥f is anm-dimensional manifold ang : V — U

is aC* map given in local coordinates ly'x; = X o ¢ = (Y1, ..., Ym)s

then for every differential forre = ), o dx, A - -+ A dX,, we can define its
inverse image

pra = ajop dgi, A Adgy,.
|

Moreover, if¢ is C2, this image inverse satisfies
d(¢*a) = ¢™(da),

where the coordinates (and the formulae (1.4)) are used on the left, while the
coordinatesq; are used on the right.
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A (O differential k-form « can be integrated over the compact oriented
k-dimensional submanifolds df with boundary, or over the image of such
manifolds under differentiable maps.

To begin with, let us recall that k-dimensional manifold with boundary
is a topological space covered by open sétsvhich are homeomorphic, via
certain maps;, to open subsets @& or to ]0, 1] x V, whereV is an open
set ofR*~1, We require the transition functioits o ¢J-*1 to be differentiable on
@i (Ui NU;). Wheng;(U; NU;) contains points on the boundarydf, i.e. is
locally isomorphic to ]01] x V, whereV is an open set dR¥—1, ¢; (Ui N up
must also be locally isomorphic to,]0] x V/, whereV’ is an open set dR~1,
and the differentiable mag; o ¢j‘1 must locally extend to a diffeomorphism
of a neighbourhood iR* of ]0, 1] x V to a neighbourhood of Jd] x V’,
inducing a diffeomorphism from V to 1 x V'. In particular, the boundary of
M, which we denote by M and which is defined, with the preceding notation,
as the union of the. (1 x V), is a closed set d¥l which possesses an induced
differentiable manifold structure.

The manifold with boundari is said to be oriented if the diffeomorphisms
¢ o ¢j‘1 have positive Jacobian. The boundaryMfis then also naturally
oriented by the charts & V, whereV is an open set dR"~* as above, since
the induced transition diffeomorphisms

b o¢j—1‘lxv V>V

also have positive Jacobian.

If M is ak-dimensional manifold with boundary amd: M — U is aC?
differentiable map (along the boundary i, which is locally isomorphic to
10, 1] x V, we requireg to extend locally to a* map on a neighbourhood
10,1+ €[ x V of {1} x V), then for every continuous-form «, we have the
inverse images = ¢*« defined above, which is a continuoki$orm on M. If
moreoverM is oriented and compact, such a form can be integratedvas
follows. Let f; be a partition of unity subordinate to a coveringhdfby open
setdU; as above, which we may assume to be diffeomorphic,td]]& 10, 1[<-*
orto 10, 1[K. Theng = > fiB, and the formf; 8 on U; extends to a contin-
uous form on [01]%. Setting fi 8 = g (X1, ..., X)dX A --- A dx, we then
define

/Mﬂ=2i: g fiB

1 1
/ f,ﬁ:/ / gi(Xl,...,Xk)dX]_...ka.
i 0 0
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The change of variables formula for multiple integrals and the fact that the
authorised variable changes have positive Jacobians ensurf%tﬁa's well-
defined independently of the choice of oriented charts, i.e. of local orientation-
preserving coordinates.

Remark 1.9 If we change the orientation of M, i.e. if we compose all the
charts with local diffeomorphisms B with negative Jacobians, the integrals

fM ¢*a change sign. This follows from the change of variables formula for
multiple integrals, which uses only the absolute value of the Jacobian, whereas
the change of variables formula for differential forms of maximal degree uses
the Jacobian itself.

Suppose now thatis ac* (k— 1)-form onU. Then, as;u is differentiable
andoM is a compact oriented manifold of dimensikr- 1, we can compute
the integral/,,, ¢*a. Moreover, we can integrate the differentieido = d¢*«
over M. We then have

Theorem 1.10 (Stokes’ formula) The following equality holds:
/ ¢ da = / o a. (1.5)
M M
In particular, if do = 0, we havef,,, ¢*a = 0.

Proof Using a partition of unity, we are reduced to showing (1.5) wiésm
has compact supportin an opendebf M as above. This follows immediately
from the formula (1.4) for the differential, and the equality

1
/ f'(t)dt = (1) — f(0),
0
which holds for any’* function f. O

We will use Stokes’ formula very frequently throughout this text. In particular,
it will enable us to pair the de Rham cohomology with the singular homology.
The following consequence will be particularly useful.

Corollary 1.11 If « is a differential form of degree A 1 on a compact n-
dimensional manifold without boundary, thén do = 0.
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1.1.3 Cauchy’s formula
We propose to apply Stokes’ formula (1.5), using the following lemma.

Lemmal.12 Let f : U — C be aholomorphic map. Then the complex differ-
ential form fdz is closed.

Proof We haved(fdz) =d(fdx+ifdy) = %dy/\ dx+i %dX/\ dy. Thus

& =15 implies thatd(fd2) = 0. 0

By corollary 1.8, we thus also have the following.

Corollary 1.13 If f is holomorphic on U, the differential for@_%dz is closed
onU — {zp}.

Suppose now thdt contains a closed disk. For everyz, € D, let D, be

the open disk of radius centred aty which is contained irD for sufficiently
smalle. ThenD — D, is a manifold with boundary, whose boundary is the
union of the circled D and the circle of centrg, and radius:, the first with its
natural orientation, the second with the opposite orientation. For holomorphic
f, Stokes’ formula and corollary 1.1.3 then give the equality

1 @, _ 1 f(2)
2in Jipz—20 2w JigecZ2—2

dz (1.6)
Furthermore, we have the following.

Lemma 1.14 If f is a function whif is continuous atg then

1 f
lim —— (2
e—0 271 |z—20|=¢ £— 20

dz= f(z).

Proof The circleof radiuse and centrey is parametrised by the map: t —
2o+ €€?™ on the segment [A]. We havq/‘(% %dz) = f(zo+e?™t)dt.
Thus,

1 f(2)
2w |z—2z0|=€ Z— 7y

1
dz:/ f(z0 + e€?™Y)dt. 1.7)
0

But as f is continuous ato, the functionsf.(t) = f(zo + €€?™") converge
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uniformly, ase tends to 0, to the constant function equaf{@,). We thus have

1 1
. it _ —
!anO/o f(zo + e€®™)dt _/o f(z0)dt = f(20).

Combining lemma 1.14 and equality (1.6), we now have

Theorem 1.15 (Cauchy’s formula) Let f be a holomorphic function on U and
D a closed disk contained in U. Then for every poigftrethe interior of D,
we have the equality

1 f(2)
f(Zo)—ﬂ o I-7

dz (1.8)

1.2 Holomorphic functions of several variables
1.2.1 Cauchy’s formula and analyticity

LetU be anopensetd", andletf : U — Cbe aC*map. Fou € U, we have
a canonical identificatioy , = C". We can thus generalise the notion of a
holomorphic function to higher dimensions.

Definition 1.16 The function f is said to be holomorphic if for everyeuJ,
the differential

df, € Hom(Ty y, C) = Hom(C", C)
is C-linear.

It is easy to prove that lemma 1.7 remains true in higher dimensions. Further-
more, we have the three following characterisations of holomorphic functions.

Theorem 1.17 The following three properties are equivalent fo€ afunction
f:

(i) f is holomorphic.

(ii) In the neighbourhood of each poing z U, f admits an expansion as a
power series of the form

fo+2)=) a7, (1.9)
|

where | runs through the set of the n-tuples of integars . ., in) with iy > 0,
and 2 := z}---Z. The coefficients of the series (1.9) satisfy the following
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property: there exist R> 0, ..., R, > 0 such that the power series
> el
|
converges for everyir< Ry, ..., ry, < R,.
@i fD ={(¢1,...,¢n)l & — &l < «;} is a polydisk contained in U, then for
every z= (zy, ..., z,) € D° we have the equality
1\" dgy d¢n
f@==— / f ERRWAN . 1.10
@ (2'77) & —a |=a (g)gl_zl &n — Zn ( )

Inthe preceding formula, the integral is taken over a product of circles, equipped
with the orientation which is the product of the natural orientations.

Remark 1.18 Because of property (ii), holomorphic functions are also known
as complex analytic functions.

Proof The implications (iii}=(ii) = (i) are obvious: indeed, (iig>(ii) is ob-
tained, forz in the product of circle$¢| |¢i — & = «;} andz in the interior of
D, by expanding the functions

() _ 10
(G1—2)n—2) (1—a)—(Z—a)) (& —an) — (za —an))

as a power series i — ay, ..., Zy — ay Whose coefficients are continuous
functions of¢. The uniform convergence in of this expansion then shows
that the integral (1.10) admits the corresponding power series expansion in
Z1—a, ..., Zy — apn, So that (ii) holds for the function defined by (1.10).
(iiy=(i) follows from the fact that every polynomial function of, ..., z,
is holomorphic, and that as the series (1.9) is a uniform limit of polynomials
whose derivatives also converge uniformly, its differential is the limit of the
differentials of these polynomials. As the differential of each polynomial is
C-linear, the same holds for the series, which is thus also holomorphic.
Itremains to see that €& (iii), which is Cauchy’s formulain several variables.
We can prove it by induction on the dimension, using Cauchy’s formula (1.8).
We can also directly apply Stokes’ formula, using the following analogue of
lemma 1.12.

Lemma 1.19 If f is holomorphic, then the differential form@)dz A - - - Adz,
is closed.
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The productof circle§[; {| i — zi| = €} is contained irD for sufficiently smalk,
and homotopic irD — (J;{¢ | & = z} to the product of circle§[ {I¢i — & =
aj }, which means that there exists an oriented compact marfatidimension
n and a differentiable map

¢:[0,1]xM - D-Ui{¢ | & =2z}

such thatpjo. m is a diffeomorphism fronM to the first product of circles, and
¢1xm IS a diffeomorphism fromM to the second product of circles, the first
isomorphism being compatible with the orientations, and the second changing
the orientation. We then deduce from lemma 1.19 that= f(g) d“ Ao A

;‘“” the differential formp* 8 is closed on [0, 1}x M, and thus by Stokes
formula, satisfies

/ 6°8 = 0.
0,1]xM

For e sufficiently small, this gives the equality

1\" do d¢,
— f oA —20
(2”7) /I;i—aa—ﬂli (§)§1 —a hen tn = 2n

1\" d¢a dén
= f .
<2I7T> /i—Zi=€ (g)fl—zlA /\é‘n_zn

But the limit of the right-hand term astends to 0 is equal td (z) by the same
argument as above.

O

Remark 1.20 The homotopy must have values in-D_J, {¢ | {. =z} and
not only in D, in order to guarantee that the fom‘if(g) d“ S A A ;d{"Z is
Ctin[0, 1] x M and to be able to apply Stokes’ formula

1.2.2 Applications of Cauchy’s formula
Let us give some applications of theorem 1.17. To begin with, we have

Theorem 1.21 (The maximum principle ) Let f be a holomorphic function on
an open subset U @". If | f| admits a local maximum at a pointaU, then
f is constant in the neighbourhood of this point.

Proof Let Ry, ..., R, be positive real numbers such that for every< R;,
the polydiskD. = {¢ € C"| |5 — uj| < ¢} is contained irlJ. Then we have



1.2 Holomorphic functions of several variables 31

Cauchy’s formula

1\" dgy d¢n
fu) = (e f A A -
) <2|7T> v/l;“i—ui |=¢i (C)gl — U ¢n — Un

Parametrising the circleg; — uj| = € by yi (t) = u; + €™, t € [0, 1], this
can be written as

1 1
f(u):/ / f(ur+ €™, U+ en€®™)dt - - -dt,. (1.11)
0 0

But we have the inequality

1 1
// f(Uur+ €™, ... U + €n€® )Y - - - dt,
0 0

1 1 _ _
5[ / 1f (UL +€€2™, . Un + € ™) dty - - dty,  (1.12)
0 0

and equality holds if and only if the argument &fu; + 1627, ... u, +
en€®7h) is constant, necessarily equal to thatfgf) by (1.11).
Now, for sufficiently smalk;, we have by hypothesis

f(u) > | f(uy+ €€ . up + ene®™)] .

Combining this inequality with (1.11) and (1.12), we obtain
1 1 ! _
)l =< / / |f (UL +e1€®™, . U + €€ ™) diy - - - dty
0 0

1 1
5/0 /O | f(u)l dty---dty = [ f(u)] .

The equality of the two extreme terms then implies equality at every step; the
first equality implies that the argument éfis constant, equal to that df(u)

on each product of circles as above, and the second equality shows that the
function f must have constant modulus equal fgu) |, for sufficiently small

€i . Letting the multiradius of the polydisk3,, vary, we have thus shown thais
constant, equal td (u) on a neighbourhood afpossibly minus the hyperplanes

{¢ = uj}, i.e. in fact constant in the neighbourhoodudby continuity. O

Another essential application is the principle of analytic continuation.

Theorem 1.22Let U be a connected open set@t, and f a holomorphic
function on U. If f vanishes on an open set of U, then f is identically zero.
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Proof This follows from the fact that by the characterisation (fi)is in par-
ticular analytic (i.e. locally equal to the sum of its Taylor series). We can thus
apply the principle of analytic continuation tb. We recall that the latter is
shown by noting that iff is analytic, the open set consisting of the points in
whose neighbourhood vanishes is equal to the closed set consisting of the
points wheref and all its derivatives vanish. O

Let us now give some subtler applications of Cauchy’s formula (1.10) or its
generalisations. These theorems show that the possible singularities of a holo-
morphic function cannot exist unless the function is not bounded (Riemann),
and is not defined on the complement of an analytic subset of codimension 2
(Hartogs).

Theorem 1.23(Riemann) Let f be a holomorphic function defined on
U —{z| zz = 0}, where U is an open set &". Then if f is locally bounded
on U, f extends to a holomorphic map on

Proof Since this is a local statement, it suffices to show that ifontains a
polydiskD = {(z, ..., zx) € C"| |z| < r;j} on which f is bounded, then we
can extendf to the points in the interior oD. We propose to show that for a
pointz in the interior ofD such thatz; # 0, Cauchy’s formula

_ 1 n dé‘l an
f(z)_(ﬂ> /BDf(g)gl_h/\m/\—{n_zn, (1.13)

oD = {(§17-~-9§n)| |§I| :ri»Vi}a

holds. Note that the right-hand term in (1.13) is well-defined, since the integra-
tion locus is contained in the locus of definition bf

Lete; € R, 0 < €1 < |zz] be such thatthe closed disk of radiasnd centre
z; is contained in the disk;| || < r1}. Then the polydisk

where

De, :={(¢1,.... )l |1 —za| < €1, zi| <13, 12>2}

is contained irD — {¢; = 0}, so that Cauchy’s formula gives

1\" da d¢n
2 ( ) /a o, (©) Ao A , (1.14)

2in —7: n— Zn

where

D¢, =={(C1, ...l [e1—zal = €1, |G| =13, 1 > 2}
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Consider, also, the product of circles
dD, = {(¢1,.... &)l 1l =€, |G| =1i,i = 2).

Then where is sufficiently small,dD — aD., — aD. is the boundary of the
manifold

M={(1 ..., )l [C1—Z1] = €1, G|l =€, |Gl =17, 1 > 2},

which is contained irD and intersects neither the hypersurféce= 0} nor

the hypersurface§; = z}. Here, the signs given to the components of the
boundary are positive when the orientation as part of the bounda ob-
incides with the natural orientation, negative otherwise. Stokes’ formula and
(1.14) then gie

_ 1\" da dén
2= <ﬂ> |:/¢;D f(4-)4'1—21 A Cn — Zn

dé‘l dfn :|
— f A A .
/BDE’ (é‘)fl -4 Cnh — Zn

The proof of formula (1.13) can then be finished using the following lemma.

Lemma 1.24 When f is bounded, and for z such that=£ 0, |z | < rj, we

have
dé‘l d{n

lim f Ao A
0 Jypr «) h—2 ¢n — Zn

=0. (1.15)

Proof Let us parametrise the product of circEB, by [0, 1]", (t1, ..., ty)
(ee?™ 7 r,e?7h) The integral (1.15) is thus equal to

- ! ! NI § (-2E N Y-SR N <2El))
n e “ e 2|7Tt ’ ? ’ n e
(@in) /0 /0 €r2 r”l_[je : (€™ — 7). (rnedh — Zn)dtl dto.

As f is bounded, under the hypothesesptie integrand in this formula tends
uniformly to 0 withe, and thus the integral in the formula tends to O with
g

As Cauchy’s formula (1.13) is proved, Riemann’s extension theorem follows
immediately, since it is clear that the function defined by the right-hand term
in (1.13) extends holomorphically . O

To conclude this section, we will prove the following version of Hartogs’
extension theorem.
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Theorem 1.25Let U be an open set @" and f a holomorphic function on
U —{z| zz =z = 0}. Then f extends to a holomorphic function on U.

Remark 1.26 This implies the more general theorem mentioned above, using
theorem 11.11, which proves that an analytic subset of codimension 2 can be
stratified into smooth analytic submanifolds of codimension at least 2; this
theorem will be proved in section 11.1.1.

Proof Let D be a closed polydisk containedlih
D={(z,....z)l lzi| <ri}.

Letze D —{¢ | &1 = ¢ = 0}. As in the preceding proof, we will show that
Cauchy’s formula

(Y[ e %G, da
fa)= <2i”> /BD f(§)§1 -7 " " ¢h — Zn (1.16)

is satisfied, and this will enable us to conclude, as above, that the furfdizpn
given in the form of an integral as in (1.16), extends holomorphicaly thet
€1, €2 be two positive real numbers, sufficiently small for the polydisk

De={¢llti—zl<e,i=1 25| <ri,i>2}

to be contained i — {¢ | £&1 = ¢2 = 0}. Then we have Cauchy’s formula

1\" déy d¢n
f(2) = <ﬂ> /m £(2) A A @1

Cl—zl (n_zn

where
D ={¢l 16 —zl=e,1 =1 2|Gl=ri, i > 2}
It thus suffices to show thatD — a D, is a boundary in
D-({¢laa=0=0ulJ{la=2)),

in order to apply Stokes’ formula and conclude that (1.16) holds.
Let as(t), ao(t), t € [0, 1], be two positive-valued differentiable functions
such thaty; (1) = €, «;(0) =r;. For everyt € [0, 1], let

D ={¢l 6 —tz| =ai(t), i =1, 2, |G| =T1i, 1 > 2}.
Lemma 1.27 For a suitable choice of functiong, as, d D; is contained in

D-({¢laa=6=0u| ] a=2)
for every te [0, 1].
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Proof Firstly, aDy still lies in D if «;(t) +t |z]| < ri, i = 1, 2. Moreover,
dD stillliesinD — Ji{¢ | & =z} if ei(t) # (1 —1t) |z], i =1, 2. Now,
note that (1-t) |z| < r; —t |z], since|z| < r;. Furthermore, the conditions
ai(t) <rj—t|z|andg;(t) > (1—1t) |z| are both satisfied fdr= 1 andt = 0.

It thus suffices to take functionsg(t) satisfying

A-t) izl <o) <ri—ti|z]l, «0)=r, o(l)=c¢.

It remains to see thdD; does not meet¢ | & = ¢, = 0} for anyt < [0, 1],

for a suitable choice of the pait{, o). But D; meets{¢ | {1 = ¢ = 0} if we
havew;(t) =t |z| fori = 1 and 2. For fixed, this imposes two conditions on
the pair (1, p), andt varies in a segment, so it is clear that this last condition
is not satisfied by a pair of sufficiently general functions. |

Lemma 1.27 gives a differentiable homotopyn— ({¢ | ¢&1 = ¢ = 0} U
{¢ & = z}) fromaD to aD,, so we can conclude by Stokes’ formula that
(1.16) holds. Thus theorem 1.25 is proved. O

1.3 The equation32 = f
The following theorem will play an essential role in the proof of the local
exactness of the operator

Theorem 1.28Let f be ack function (for k> 1) on an open set of. Then,
locally on this open set, there exist€afunction g (for k> 1), such that

g

= =f 1.18
P (1.18)
Remark 1.29 Such a function g is defined up to the addition of a holomorphic

function.

Proof As the statement is local, we may assume thaas compact support,
and thus is defined ar@ onC. Now set

1 £(2) _

d

Remark 1.30 This is a singular integral. By definition, it is equal to the limit,
ase tends ta0, of the integrals

1 f(¢)

2 Joo T2
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where R isa disk of radiug centred at z. It is easy to see that this limit exists
(the functlon ~is LY).

Making the change of variablg = ¢ — z, we also have

1 / f(¢' +2)

S 1z dg’ Adg’,

9@ = lm ge(2). 8.2 =
where
C.=C-D.,

and D! is a disk of radius centred at 0. The convergence of hewhene
tends to 0 is uniform ire. Moreover, we can differentiatender the integral
sign the (non-singular) integral definigg

9g. 1 af (¢’ +2)d¢’ Adg’
9z 2im Je 9z ¢

As 2€12) js ck-1 with k — 1 > 0, the functionsi& convergeuniformly, and
we conclude thag is at least! and satisfies

g 1 af (¢’ +2)d¢’ Ade’
0z 2in Jo 8z ¢
By induction onk, the same argument actually shows thas CX. Thus, it

remains to show the equalit%% = f. Again making the change of variable
¢ =1+ 2z we have

d; /\dg

D= tim —( ) (1.19)
C—D,

e—>0 2
Now, we have the equality o — D,
_( )d;Adg —d(f d¢ >;
-z

indeed, for a differentiable functiop(z) we know thatdg = g—g’d; + %dz,
and thus

9 _
d(¢dc) = —£d; Adz.

Stokes’ formula thus gives

1 de Ade 1 d¢
ain ), &( 9] — ~ox - f(;“)—é — (1.20)
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Using lemma 1.14 and the equalities (1.19), (1.20) we have thus proved the
equality (1.18).

Exercises

1. Let¢ : U — V be a holomorphic map from an open subset®fo an open
subset ofC". Show that the set

R = {x € U | d¢y isnotanisomorphisin

is defined inU by exactly one holomorphic equation.

This set is called the ramification divisor ¢f when it is different fromJ.
2. Let f be a holomorphic function defined over an open subsef C". We

assume thaf does not vanish outside the set

{z=(z1,....20) €U |21 =2 =0}.

Show thatf does not vanish at any point bf.

3. Let f be a meromorphic function defined on an open subsef C. This
means thaf is locally the quotient of two holomorphic functions.
(a) Show that for any compact subsetc U, the number of zeros or poles
of f in K is finite.
(b) Letx € U. Show that there exists an intedgre Z such thatf can be
written as ¢ — x)*¢ in a neighbourhood ok, with ¢ holomorphic and
invertible (that is non-zero).
The divisor of f is defined as the locally finite sum

Z Ky X.
xeU

(c) Letx € U andD c U be a disk centred ir, such thak is the only pole
or zero of f in D. Show that

1 df
ke = | ——.
X f;,D 2in f



